Existence of Solutions of a (Nonsmooth) Thermoviscoplastic Model and Associated Optimal Control Problems
نویسندگان
چکیده
A thermoviscoplastic model with linear kinematic hardening, von Mises yield condition and mixed boundary conditions is considered. The existence of a unique weak solution is proved by means of a fixed-point argument, and by employing maximal parabolic regularity theory. The weak continuity of the solution operator is also shown. As an application, the existence of a global minimizer of a class of optimal control problems is proved.
منابع مشابه
An efficient one-layer recurrent neural network for solving a class of nonsmooth optimization problems
Constrained optimization problems have a wide range of applications in science, economics, and engineering. In this paper, a neural network model is proposed to solve a class of nonsmooth constrained optimization problems with a nonsmooth convex objective function subject to nonlinear inequality and affine equality constraints. It is a one-layer non-penalty recurrent neural network based on the...
متن کاملExistence of three positive solutions for nonsmooth functional involving the p-biharmonic operator
This paper is concerned with the study of the existence of positive solutions for a Navier boundaryvalue problem involving the p-biharmonic operator; the right hand side of problem is a nonsmoothfunctional with variable parameters. The existence of at least three positive solutions is establishedby using nonsmooth version of a three critical points theorem for discontinuous functions. Our resul...
متن کاملA Neural Network Method Based on Mittag-Leffler Function for Solving a Class of Fractional Optimal Control Problems
In this paper, a computational intelligence method is used for the solution of fractional optimal control problems (FOCP)'s with equality and inequality constraints. According to the Ponteryagin minimum principle (PMP) for FOCP with fractional derivative in the Riemann- Liouville sense and by constructing a suitable error function, we define an unconstrained minimization problem. In the optimiz...
متن کاملINFINITELY MANY SOLUTIONS FOR A CLASS OF P-BIHARMONIC PROBLEMS WITH NEUMANN BOUNDARY CONDITIONS
The existence of infinitely many solutions is established for a class of nonlinear functionals involving the p-biharmonic operator with nonhomoge- neous Neumann boundary conditions. Using a recent critical-point theorem for nonsmooth functionals and under appropriate behavior of the nonlinear term and nonhomogeneous Neumann boundary conditions, we obtain the result.
متن کاملOptimal Control of Hand, Foot and Mouth Disease Model using Variational Iteration Method
In this paper, the optimal control of transmission dynamics of hand, foot and mouth disease (HFMD), formulated by a compartmental deterministic SEIPR (Susceptible-Incubation (Exposed)- Infected - Post infection virus shedding - Recovered) model with vaccination and treatment as control parameters is considered. The objective function is based on the combination of minimizing the number of infec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015